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Abstract

This thesis focuses on side-channel attacks via power analysis on cryp-
tographic algorithms running on JavaCard. More specifically, I eval-
uated the software-based implementation of ASCON authenticated
encryption (AEAD) using the correlation power analysis (CPA) for
attack implementation and Test Vector Leakage Assessment (TVLA)
for verification of key leakage. At first, I improved the readability, effi-
ciency, and usability of the existing CPA attack scripts intended for
the AES-128 encryption algorithm. Then, I implemented the CPA at-
tack on the ASCON-128 authenticated encryption algorithm (AEAD)
while reusing generic parts of the AES attack. I compared the com-
plexity of execution and implementation for both attacks. Finally, I
described possible protections against side-channel attacks through
power analysis. This thesis was done in cooperation with the CRoCS
laboratory.
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Introduction

When designing a new cryptographic protocol, many aspects have to
be considered, such as semantic security, computational complexity, al-
gorithm properties like confusion and diffusion, or durability against
side-channel attacks. This thesis will primarily focus on durability
against side-channel attacks by power analysis of an authenticated
encryption (AEAD) from a relatively new cryptographic family called
ASCON, winner of the NIST Lightweight Cryptography competition
(2019-2023) [1] and CAESAR competition in the lightweight applica-
tions category [2]. As the names of both competitions suggest, ASCON
cryptographic primitives are intended to be used in real-time applica-
tions with large volumes of data or devices with limited performance
or power [3], which are usually small embedded devices where power
consumption can often be easily measured and exploited. In our case,
this device was JavaCard, a programmable chip card that internally
uses a reduced version of JVM (Java Virtual Machine) called JCVM
(Java Card Virtual Machine). JCVM does not have a garbage collector,
multidimensional arrays, floating point arithmetic or other demanding
features used in modern languages like regular Java [4].

At first, I improved and optimised the existing CPA attack on AES-
128 with related scripts provided by the CRoCS laboratory initially
created by my supervisor and his colleague Leo Weissbart. Improve-
ments include adding multi-threading support, attack automation,
better logging, enhanced attack configurability and a more refined
structure of scripts and overall project, among others. Then, I imple-
mented the CPA attack on ASCON-128 authenticated encryption while
reusing the generic functionality from the AES attack implementa-
tion by extracting it into generic single-purpose objects and common
scripts, thus creating a generic framework for any CPA attack. Further-
more, I created new utilities and scripts to make working with power
traces more convenient. Finally, I implemented TVLA (Test Vector
Leakage Assessment) to verify leakage and executed both attacks on
power measurements captured from the JavaCard running AES-128
and ASCON-128 encryption algorithms.

AES attack is used as a baseline and compared with the ASCON
attack in terms of robustness against power analysis, as well as com-
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plexity of the attack implementation and execution. Neither implemen-
tation of the cryptographic algorithm in JavaCard is hardware-based
and runs only as software on the general-purpose processor. As a
result, this makes a side-channel attack easier because hardware im-
plementations tend to have optimisations and protections in place. For
example, Dual-Rail Random Switching, which uses two circuits with
complementary logic that cancel out variations in power consumption
created by the processed data [5].

The final step of this thesis is to describe potential software protec-
tions against side-channel attacks via power analysis by hiding and
masking.



1 Theoretical background

1.1 Side-channel attacks

Side-channel attacks can reveal secrets or change device behaviour
without flaws in the logic of the underlying algorithm. However, al-
gorithm design can impact its robustness against this class of attacks.
Software protections without hardware support often only make a
side-channel attack much more difficult but still feasible [6, 7]. These
attacks are less general and usually focus more on a specific algorithm,
but can be very powerful if not considered [8].

They are primarily organised into two distinct classifications [8]:

1. Logical tampering

(a) Active attacks can inject faults or change the branching of
the program in a way that can be used to exploit the device.

(b) Passive attacks do not change the device’s actions but may
be used to reveal information that should be otherwise
inaccessible.

2. Physical tampering

(a) Invasive attacks need to disassemble or somehow physi-
cally tamper with the device to access the internal circuits
to be successful.

(b) Non-invasive attacks only exploit information that can be
gathered externally without causing irreversible damage to
the device. Such as power consumption, timing, and elec-
tromagnetic emissions.

Non-invasive passive attacks are most relevant for this thesis. Here
are some examples [7]:

e Timing attack - Executing the identical operation on a chip
may take a different amount of time depending on the data pro-
cessed, making these timing irregularities exploitable to attain
additional knowledge about the secret.
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e Electromagnetic emissions attacks - These attacks use electro-
magnetic radiation emitted by the chip, which may be linked
with data and instructions executed by the processor. Therefore,
it may reveal information about the internal state and instruc-
tions executed.

e Power analysis - Various computations and their corresponding
data need a different amount of power to be performed. As a
result, power consumption depends on the operations executed
by the chip and the data processed, including secrets. Therefore,
power consumption may reveal some properties of the underly-
ing secret that are otherwise inaccessible.

Side-channel attacks that use power analysis are the primary focus
of this thesis. Extracting information from power traces can be done
using various techniques, such as correlation power analysis [7].

1.1.1 Correlation power analysis (CPA)

Correlation power analysis is a technique that can extract secrets from
a device by analysing captured power consumption when the device
performs sensitive operations like encryption and must use secrets
stored inside the device. Different data passing through the bus in-
side the chip influences how much energy is needed for the transfer
due to the nature of the representation of digital data in hardware
(charged/discharged). As a result, there will be a correlation between
data processed by the device and power consumption. We exploit this
fact during the CPA attack [8].

To perform the attack, we need to predict how each possible com-
bination of key bits influences the power consumption. As a result, we
need the power model function defined as follows:

Definition 1. Generic power model function
y=f{) (1.1)
where:

f is the power model function,
x is processed data and
y  is theoretical power consumption.
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The power model function used in a concrete attack depends on the
target and cryptographic algorithm. Usually, it is Hamming Distance
or Hamming Weight of an internal state [7].

Definition 2. Hamming Weight (HW) represents a count of bits set
to the logical one in a binary number [7].

Definition 3. Hamming Distance (HD) represents the count of dif-
ferent symbols between two strings [9]. The easiest way to calculate
Hamming Distance in binary representation is by using Hamming
Weight.

HD(x,y) = HW(x®y) (1.2)

Hamming Distance can be used as a power model function because
changing the bit charge inside registers consumes more power than if
it remained the same. Therefore, power consumption is influenced by
the number of changed bits in the corresponding register [8]. Another
method uses Hamming Weight, which depends on the data transferred
via a bus. Transferring charged bits (1) is more power-demanding
than transferring discharged bits (0) and, as a result, can be used as a
power function [8].

After choosing the power model and acquiring the power traces
with a fixed key, we calculate the correlation between the theoretical
and actual power consumption. Correlation is suitable because when
theoretical consumption rises on a correct key guess, real consumption
should increase as well and the other way around. As a result, we
can distinguish between correct and incorrect key guesses with some
degree of confidence [7]. Correlation cancels static noise in power
consumption, which is the power necessary to keep the processor
running and is independent of tasks performed and data processed [3].
With enough data, dynamic noise created by the processor’s activity
becomes negligible, and the correlation when using the correct key
guess will be higher compared to other key guesses. Correlation is
mathematically defined by this equation.
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Definition 4. Pearson’s Correlation Coefficient [9]

L eov(XY) | EI(X— ) (Y — i)
XY= ey VEX =B ] )

E is the expected value,
p  the mean of the random variable and
o is the standard deviation.

1.2 JavaCard

JavaCard is a programmable smart card with cross-platform interop-
erability. JavaCard supports JCVM (Java Card Virtual Machine), a
stripped version of the JVM (Java Virtual Machine). JCVM does not in-
clude all the features of the regular JVM. Most notably, it does not sup-
port multi-threading, iterators, garbage collector, multi-dimensional
arrays, or floating point arithmetic [4]. Due to the architecture con-
straints, JavaCard only supports two primitive types, byte and short.
However, newer versions of JavaCard also support the integer type.
JavaCard applications are first compiled by the standard Java compiler
and then into bytecode called an applet, which is executed inside the
card by the JCVM [4]. JavaCard can have multiple logically isolated
applets installed, but only one can run at a given time. Packages with
applets are installed on a card using the Global Platform specification,
which is also responsible for the security and life-cycle of a card, from
initialisation to termination [10].
JavaCard uses two types of memory architecture:

e Transient - stored inside the card’s RAM, deleted when power
is lost or an applet is deselected.

o Persistent - stored inside the card’s EEPROM, stays unchanged
until manually overwritten.

Communication with JavaCard is done through APDU packets
(Application Protocol Data Unit), which are defined in the standard
ISO7816-4 [11]. Figure 1.1 shows structure of APDU packet.
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Request (APDU) © Header (required) Body (optional) Response (APDU)

Instruction class Optional data User data User data Body (optional)
(1 byte) (2 bytes) (1 - 255 bytes) (0 - 255 bytes) O Trailer (required)

LCLA INS| P1 | P2 | Lc | Data Lel [Data Swi SWZ}

H_J [ %’—)
Instruction number User data length Expected Status word (2 bytes)
(1 byte) (1 byte) response length
(1 byte)

Figure 1.1: APDU packet format

1.3 AES

AES is a specification used for symmetric encryption standardised by
NIST (National Institute of Standards and Technology) in 2001 and
is still widely adopted [12]. The main goal of encryption is to pre-
vent the creation of ciphertext or the acquisition of plaintext without
knowledge of an encryption key, which is identical for encryption and
decryption in symmetric cryptography. An encryption key in AES
can be 128, 192 or 256 bits long. Longer keys increase entropy and
consequently security.

AES is a block cipher, which means it encrypts plaintext in blocks
of size 128 bits for any key length. As a result, padding is required
to cover cases where the data length is not divisible by 128 [12]. AES
consists of rounds, where the number of rounds depends on the length
of the key. This can be seen in Table 1.1.

Table 1.1: AES rounds and block sizes for different key lengths [12]

Key Length | Number of rounds | Size of block
128 10 128
192 12 128
256 14 128

The AES round consists of several phases with different purposes.
Before every round, a different key from the key scheduler (expander)
is added (XOR) to the current state of the cipher. This key is derived

7
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from the original key provided by the user. This key is equivalent to
the original key in AES-128, during the first round [12]. Because we
perform the attack within the first round, we can completely abstract
the key scheduler part of AES and not consider it in the attack. The
next step is the substitution layer called Sbhox. This operation removes
the linear relationship between the input and output of the Sbox. This
step is essential because it makes some attacks that rely on algebraic
analysis of ciphertext impossible [12]. Otherwise, attackers could take
advantage of the linearity of all other operations in AES. Nevertheless,
in our case, it allows the attack to identify the key more precisely
without acquiring more potential key candidates that would have
some linear relationship with the input data [3].

We do not use a hardware implementation of AES on JavaCard.
Therefore, data must be stored in the registers or transferred over
the bus after each phase. We can pinpoint the attack here and ignore
the rest of the AES encryption process, such as mixing columns and
shifting rows, because they do not provide any additional advantage
for the attack and, on the contrary, make it more complicated.

Encryption round (up to n-1)

Plain text block Substitution Layer

(input) —> (S-Box) — —>» Shiftrows —>» Mix columns
Original key.
(1st round)
If next round is not last
|_ Diferent key <
pevisehedlied — ..ch round -
lfinextroundis last  Last encryption round Color Legend
Different key E tial st t licat
(last round) Substitution Layer Ssentia steps to rep'icate

first round of AES)

Steps which can be
O abstracted because they
do not change the attack

—»  Shift rows in the CPA attack (on the
(S-Box) —‘

3. <
> <

Cipher text block

(output) Steps after the attack

Figure 1.2: AES schema with point of the attack
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1.4 ASCON

A Pi1C Prq Cia Pi C

~~~~~~~~~~~~~ e o e
r (S . r £ (-
A IR Nl |
23 25 R cE h 1% ;
=5 =8 | 2B :E i EE !
Js 8 ..c LZELaml ¢ 5 ... - PN - |
| = Ravran = e g Zid H
- t bt i
_______________________________________ i | ¥ v SN SO N ||| ¥~ B 11
Initialization Associated Data Plaintext Finalization
k: 128-bit secret key {Al, ..., Ag}: Blocks of associated data {Cy, ..., Ci}: Blocks of ciphertext
IV: Initial Vector N: Nonce {Py, ..., P;}: Blocks of plaintext T: 128-bit tag

Fio. 2. Snonoce-based structure of authenticated encrvntion in the Ascon cinher.

Figure 1.3: Structure of authenticated encryption of ASCON-128 [13]

ASCON is a family of authenticated cryptographic primitives cre-
ated for high-throughput applications or devices with limited power
and performance. Usually embedded systems, or, as in our case, chip
cards. It offers confidentiality and authenticity of the data [14]. NIST
chose ASCON as the new standard for lightweight cryptography in
February of 2023 [15]. ASCON family, among other things, supports
hashing and authenticated symmetric encryption with associated data
(AEAD) [14].

In this thesis, I concentrate only on one version of authenticated
encryption called ASCON-128. Other variants differ in the number of
rounds, rate, and key size. However, these parameters do not signifi-
cantly influence the attack and can be reused with minor modifications
to the key extraction logic. Table 1.2 shows the differences between
various AEAD variants.

Table 1.2: Parameters of different AEAD ASCON ciphers.

ASCON-128 | ASCON-128a | ASCON-80pq
Entropy 128 bits 128 bits 128 bits
Key size 128 bits 128 bits 160 bits
Rate 64 bits 128 bits 64 bits
Capacity 256 bits 192 bits 256 bits
Rounds(a,b) | (12,6) (12,8) (12,6)
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ASCON-128 is based on sponge construction, which is divided
into several phases. Each phase works with the 320-bit long internal
state S, which is separated into five 64-bit segments (xq, x1, X2, X3, X4)
used variously inside the permutation function p used during the
encryption process [14].

At the start of the initialisation phase, state S is filled with values
in the following order [14]:

1. Initialisation Vector (xg) - 64-bit constant defined in the stan-
dard of ASCON equal to 0x80400C0600000000.

2. Key (x1,x2) - 128-bit secret value defined by the user, which
recovery is the attack’s objective.

3. Nonce (x3,x4) - 128-bit value that must be random and ideally
unique to ensure freshness and prevent replay, chosen plain-text
and other types of attacks.

After initialising the internal state, the permutation function p
repeats a times. The permutation function p consists of several oper-
ations shown in Figure 1.4. These operations perform the following
actions.

(a) Round constant addition p¢

(b) Substitution layer pg with 5-bit S-box S(x)

(c) Linear layer with 64-bit diffusion functions Z;(x;)

Figure 1.4: Different operations performed by permutation function p
on internal state S during the encryption process (AEAD) [16]

10
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1. Addition of round constant to the register x,, which changes ev-
ery iteration of permutation p and is computed by the following
equation:

Definition 5. Computation of round constant [17]:
RC; = 0xF —i || 0x0 + i (1.4)
where:

i is anindex of the round starting from 0 and
|| is the concatenation of 2 parts.

2. The substitution layer uses a non-linear function with a 5-bit
long input mapping called an Sbox. Input to this function is
taken by bit-sliced columns from words x( to x4, transformed
by the Sbox, and written back to the state S. Like in the AES,
this operation removes the linear dependency of encrypted text
to the plaintext and key [14]. The Sbhox is shown in Figure 1.5!
but is usually implemented as a look-up table because it is faster
than manual computation. On the other hand, a look-up table is
more memory demanding.

Xo =D ; ~D—P—> X0
A 1’6}’ Y A
X1 AP DX
V1D
X2 D 1>€v}>‘ ~D =?=X2
\i
X3 - Z\D{) 1, x;
V1=
Xa—>D—y——#D - X4
1D
A

Figure 1.5: Logical representation of the ASCON Sbox [3]

1. In Figure 1.5 @ represents logical XOR and ® represents logical AND.

11
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3. The linear diffusion layer applies an Function 1.5 with differ-
ent rotation values for each register x;. These values are shown
within Table 1.3 [14].

Definition 6. Linear diffusion layer function ) i(x;) applied on
each register x; with different y and z parameters.

Y i(xi) =x® (xi >>y) ® (x; >> z) (1.5)
where:

>> isright circular shift (right rotation).

Table 1.3: Different rotation values y and z used in the linear diffusion
layer function 1.5 for each register x;

iy |z
0]19]28
1]61|39
2,116
3110 |17
4|7 |41

Later parts of the ASCON encryption process, such as adding
associated data or plain text and extracting ciphertext and tag, are
unnecessary during the side-channel attack and can be omitted from
the theoretical background.

12



2 Setup and techniques

2.1 Measurement setup

A measurement setup that is able to capture power consumption from
JavaCard is necessary to obtain a power traces later used to perform
a side-channel attack using correlation power analysis (CPA). Our
setup consist of the oscilloscope Picoscope 6404D, the board LEIA-
Solo 1.4, and power supplies RIGOL DP832 for AES traces and Geti
GLPS3010H for ASCON traces. The power supply swap occurred
because the RIGOL power supply broke and was replaced between
the measurements of AES and ASCON.

Power supply used
during AES attack

Figure 2.1: Measurement setup with power supply used during AES
attack on the JavaCard

The board LEIA-Solo connects JavaCard to the oscilloscope and
the power supply. Version 1.4 of the board has low resistance from the
manufacturer and lowered measurement precision. Hence, the board
resistance was increased by swapping the shunt resistor from 0.1} to
220.

13
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2. SETUP AND TECHNIQUES

During measurements, we used the oscilloscope channel B config-
ured using the Picoscope SDK! as follows:
Offset: —175mV,
Channel Range: 5,
Threshold: 9753,
Trigger AUX: 5,
Threshold direction: 2 (Rising edge),
Sample rate: 1.25GS/s.

JavaCard used in the setup was NXP JCOP 4 Classic Edition that
supports JavaCard API version 3.0.5 and Global Platform specification
2.3. We chose this card because it was the fastest and most recent
available in the CRoCS laboratory:.

2.2 Measurement script

The measurement script is used to capture the traces from a JavaC-
ard. First, the script prepares the card reader to allow communication
with the JavaCard and sets up triggers. Then it selects an applet with
ASCON implementation and sends the key used by the encryption
algorithm. Furthermore, it needs to set up the oscilloscope with the
aforementioned configuration. The measurement script then sends
commands for encryption to the card, where the oscilloscope automat-
ically captures the power trace of computation. The voltage sample
within a trace is represented by an 8-bit integer produced by the Pico-
scope’s built-in AD converter. New plaintext and nonce are sent before
every measurement and later saved within the output file with the
obtained trace. Knowledge of plaintext or nonce is essential during
CPA attacks.

The measurement script was provided to me by Milan Sorf from
the CRoCS lab. Nevertheless, I improved the script structure, added
support for multiple output formats, and added an option to fix key,
nonce or plaintext. Additionally, I implemented interleaving of fixed
and random nonce necessary for TVLA evaluation (Test Vector Leak-
age Assessment) 2.

1. https://github.com/picotech/picosdk-python-wrappers
2. ~earmsrere in Chapter 4.2.

Move Aetals wve ”
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2.3 File formats

2.3.1 Requirements for file formats

Files that contain measurements from the oscilloscope can have tenths,
even hundreds of gigabytes. Therefore, these files needs to be pro-
cessed in chunks that fit into regular-sized memory. The technique
commonly used is called file memory mapping. It temporarily loads
essential data from the file on a disk required to execute some opera-
tion, frees them when no longer needed and modifies the file content
to reflect potential changes. Consequently, file formats used to save
traces should be able to store multi-dimensional arrays and provide
seamless memory mapping.

2.3.2 TRS file format

Traces captured by the original measurement script were saved into a
proprietary file format called Inspector Trace Set with extension trs de-
veloped by Riscure [18]. The file format intended usage is for captured
power traces from embedded devices or smart cards [19, 18]. Riscure
developed and published a library for Python for easier processing
and manipulation of TRS files by third parties [18]. Documentation
for this library is available online.

The TRS file format is relatively simple. The header consists of
named parameters in various formats, identical for every trace. Every
trace has named metadata that may differ between traces, but their
format and count must remain consistent.

The Python library allows loading a single trace from the file into
memory for processing. However, it cannot fetch only relevant sections
of the trace. Instead, it loads all samples within a trace into memory.
This behaviour significantly slows operations that need just a section
of samples from the trace, making this library and consequently the
tile format unsuitable for optimised processing.

2.3.3 Numpy file formats

Limited functionality of the trsfile library (especially the inability to
load only part of a trace into memory) and usage of the Python numpy
library within the attack implementation made me decide to use the

15
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numpy file formats (NPY and NPZ) for the trace storage. The NPZ
file format is an archive with a collection of NPY files, where NPY
is just one array in binary representation with a header containing
details about the array, like its size and dimension(s). Because the
NPZ format is an archive, all data within arrays must be loaded in
main memory before saving, making it unusable for large arrays.

These file formats support sliced memory mapping, and working
with them is almost equivalent to a regular numpy array. However,
they do not support metadata for each trace, so two separate arrays
are needed, one for the traces and the other for related metadata. Also,
metadata cannot be named and can only be distinguished by their po-
sition in the corresponding array. Still, these are minor inconveniences
compared to the performance benefits.

2.3.4 Comparison of file formats

Due to the advantages mentioned previously, I have mainly used the
NPY file format because I have often worked with large files. This
format’s main disadvantage is storing metadata and corresponding
traces separately due to their incompatible dimensions. However, it
is not a substantial obstacle and is only slightly more complicated to
implement. Table 2.1 shows the advantages and disadvantages of the
previously mentioned file formats.

Table 2.1: Advantages and disadvantages of supported file formats

File format property NPY | TRS | NPZ
Can store multiple arrays with
. . . . X v v
incompatible dimensions
Can be read and modified without v v v
loading all traces into the memory
Can be saved in chunks, without needing
. . v v X
all data in memory at one time.
Can read only relevant samples without v X v
loading the entire trace into the memory
Can store natively named metadata X v X
about traces
Supports compression X X v
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2.4 Attack techniques

2.4.1 Alignment of traces

Captured traces are unsynchronised due to several aspects that impact
the timing of operations, such as clock jitter, cache, imprecise triggers
and more. Therefore, an operation that happens in one trace at a
specific time (sample) can be present elsewhere in another trace. This
means that traces are not aligned with each other.

Aligned traces are essential for a successful attack. Otherwise, an
attacker would calculate the correlation between samples representing
different sections of an algorithm, consequently lowering the correla-
tion. As a result, higher values of correlation that signify the correct
key can be lost. Making the attack fail because correct key guesses are
indistinguishable from incorrect ones.

Because similar computations happen in every trace, the power
consumption has a linear dependency between traces where the equiv-
alent computation occurs. As a result, correlation can be used to align
the traces according to the patterns, representing the same operation.

The alignment technique takes the reference trace (often the first)
and tries to align other traces using normalised cross-correlation. Nor-
malised version of correlation reduces the dependency on the ampli-
tude and peaks in real traces and therefore is more suitable for power
measurement traces [20]. The correlation is calculated on different
trace shifts, and the shift with the largest correlation is used to align
the trace by reversing it. When the correlation between the aligned
trace and the reference trace is low, the trace should be discarded
because the trace may be faulty and can negatively impact the results.
If many traces are faulty, it might signal that we should use a different
reference trace or that there is an issue with the measurement setup.

2.4.2 Window Resampling

Resampling is a signal processing technique that takes a predefined
number of samples from a trace called a resampling window. It calcu-
lates the window average and writes it as a new value into the output.
The resampling window is then moved by a predefined step, and its
average is again saved as the output sample representing the whole
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window. This process is repeated until the whole trace is resampled.
Resampling windows should slightly overlap to smooth transitions
between output values representing the window average.
Resampling can significantly reduce the size of traces, but can
impact the results of the side-channel attack because it reduces the
strength of the original signal [6]. On the other hand, it can smooth out
some irregularities within samples and reduce noise, thus increasing
the probability of attack success [6]. Resampling also improves align-
ment because the aforementioned smoothing makes finding similar
sections easier. Algorithm 1 shows pseudo-code for resampling.

Algorithm 1 Trace resampling

Require: Trace T with N samples
Require: Resample step - step

Require: Window size - window

Ensure: step < window

: output [ ]

2: for index <— 0 up to Floor(N / (window - step)) do
3 start < index x step

4:  chunk < T|[start : start + window]
5

6

7

—_

output[index| < Average(chunk)
: end for
: return output

2.4.3 Alignment guided by resampling

As said previously, resampling can reduce the strength of the signal
and thus secret leakage as well, possibly decreasing the chances of
attack success when not balanced by the benefits provided by the
resampling. We should align traces even when we do not want to
resample them. Resampling makes alignment easier by exposing pat-
terns by which the traces are aligned. Therefore, we need a way to
align traces without applying resampling to them while preserving
the alignment benefits provided by resampling.

One solution is to create a copy of traces that is resampled with
a step equal to one and a resampling window of a sufficient size
to make patterns detectable. As a result, resampled traces have the
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same number of samples as the original. Then, we calculate the shifts
necessary to align these specifically resampled traces. Obtained shifts
are then applied to the original traces, consequently aligning them
without resampling. I call this approach advanced alignment.

2.4.4 Reduction of trace size

One of the main obstacles during the power analysis attack is the size
of the traces, which may have tens or even hundreds of gigabytes. One
solution for this problem is to shorten measurements by including
only the relevant part of the encryption process containing the point
of the attack, which is usually in the first round®. Patterns between per-
mutation rounds are often visible in traces. Consequently, we should
be able to identify the location of the first round. This location does
not significantly vary between measurements. Therefore, we can mea-
sure several traces to determine the interval of the first round, which
should be saved in measurements later used by CPA attacks. Patterns
can be visible even within a single round, allowing us to decrease the
number of preserved samples from the measurement even further.

Another technique that may help to find the location of the attack
is to insert some distinctive operation visible in measured traces before
and after the potential leakage location [6]. Random number genera-
tion in JavaCard has this property. However, an attacker must be able
to modify the implementation or at least have access to the source
code to replicate it on a different card.

3. Round repetition often does not provide anything valuable to the CPA attack
and thus we usually choose the first round.
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3 Attack implementation

This chapter describes the implementation of the AES attack, ASCON
attack, and other related scripts. It includes a description of new fea-
tures and changes from the original code, provided by the CRoCS
laboratory. The code is available here.

3.1 Project structure

Implementation uses Python 3.13.2 as the programming language. I
chose Python because the original scritps were also written in Python,
Python supports trsfile library, and working with large matrices can
be done efficiently using libraries like numpy. The main project folder
contains README.md file that shows the necessary steps to run the
implementation with a brief functionality description. The project is
separated into multiple modules (folders):

Aes - Contains code specific for AES attack.

Ascon - Contains code specific for ASCON attack.
e Models - Object models used only in the ASCON attack.
e ProofOfConcept - Contains part of ASCON cryptographic al-
gorithm with trace generator used for testing purposes, more
details in Chapter 4.3.3.

AttackTools - Module for signal processing tools necessary to perform
the attack (Alignment, Resampling, etc.).

Common - For generic code that can be used in any CPA attack.
e Generics - Abstract objects that contain generic functionality.
More on them in Chapter 3.3.
e Maps - Specific conversions that map input to predefined output.
e Models - Generic models that can be used in any CPA attack.

Configuration - Configuration of all attacks and attack tools.
e Models - Configuration models that can be inserted into attack
tools, attacks and generics to specify their behaviour.
Helpers - Module with code that performs functionality needed in
various parts of the code to avoid duplication.
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MeasurementScripts - Contains scripts that gather power traces from
a device.
e Models - Data models used specifically by measurement scripts.

Tests - Tests that help to assess functionality and speed of specific
code.

Tvla - Contains Test Vector Leakage Assessment (TVLA) implementa-
tion. For more details see Chapter 4.2.

Utilities - Module for code that performs operations on trace files like
reading, converting and plotting graphs of traces.

3.2 Features

3.2.1 Automatic alignment

Aligned traces are essential to perform a CPA attack due to the reasons
mentioned previously in Chapter 2.4.1. Nevertheless, traces must be
aligned repeatedly because every trace measurement has slight timing
differences that shift traces relative to each other. As a result, traces
become unaligned after some period, even when previously aligned.
Therefore, to automate the attack, we also need to realign traces au-
tomatically. Traces are attacked by intervals due to the large number
of samples within one trace, which may reach tens of millions. Auto-
matic alignment takes only relevant measurement samples to perform
alignment and following attack(s)!. We can specify the length of the
alignment interval, how often the automatic alignment should occur
(for example, every second attack) and the maximum trace shift to
perform alignment. The alignment interval is always centred based
on the attack interval(s) before the next automatic alignment. Auto-
matic alignment allows the discarding of traces below a predefined
correlation threshold to get rid of defective ones.

Figure 3.1 shows an example of two different configurations of
automatic alignment. The first example shows a large attack interval
where automatic alignment is performed every attack. The attack in-
terval is larger than the alignment interval and is therefore used as

1. Attack represents finding the best correlation between theoretical and actual
power consumption on key guesses within the current attack interval (subset of
samples).
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the internal interval, representing currently required samples loaded
from the disk. After aligning the traces, the output interval is written
to a new file containing only samples used in the next attack(s). The
second example shows small attack intervals where automatic align-
ment is performed after every second attack. However, in this case,
there is an overlap between attack intervals. As a result, the alignment
interval needs to be centred correctly, considering the overlaps. In this
case, the alignment interval is larger than attack intervals with overlap
and therefore is used as the internal interval.

Alignment interval First attack interval [] Output interval
[ Maximum shift [71 Second attack interval [l Internal interval

[l Overlap between the first and the second attack interval
1st

example | |
[ | | I »

Hﬂme samples
2nd

example |—I -—|—| o
S Trace samples

Figure 3.1: Automatic alignment

3.2.2 Multi-threading

The original code does not have multi-threading support. I added
support for parallel processing using Python native ProcessPoolEx-
ecutor? on Resampling, Alignment and Trace Converter’. I have not
used ThreadPoolExecutor? due to a limitation by Global Interpreter
Lock (GIL) that prevents the interpreter from running in multiple
threads simultaneously and causes some performance issues. This
problem does not occur when using ProcessPoolExecutor because
every process has its own instance of the Python interpreter. However,
this created another problem with inter-process communication. I
used global variables for memory-mapped trace files that allowed
access to traces for all processes without copying them. Every process

2. See https://docs.python.org/3/library/concurrent.futures.html for more details.
3. See Chapter 3.4 for more details.
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has a trace assigned, so they do not work with the same underlying
data. A result from processes is stored in the shared memory and
copied to the output in case of NPY/NPZ file format or returned as an
instance of the Trace object from the TRS library in case of TRS output
format.

A count of processes used during computation can be manually
configured. Using multi-threading when working with slow mechani-
cal hard disks is not recommended because they usually become the
bottleneck even when the process count equals one. Multi-threading
scatters reads from the disk, slowing it even further and making the
runtime of a script longer. Scattered reads are not problematic when
using Solid State Drives (SSD).

3.2.3 Logging

Preserving configuration, location and visualisation of a successful
attack is necessary to assess and replicate the attack results in the
future. Therefore, automatic logging of these data is helpful, but it was
not present in the original implementation. When starting an attack,
a log file is created, containing information like attack interval, used
resampling, correlation and other information for every successful
attack on separate lines. This file is named after the date and time
when the attack started with the .log extension, and is saved in a folder
defined in the configuration. If graph logging is enabled, a folder with
the date and time in its name is created, and a log file is generated in
this folder instead. This folder contains graphs of successful attacks
named after the current stage* and attack interval.

Another logging is located in the alignment attack tool. This log-
ging is text only and contains shift, correlation and trace index to asses
the result of alignment. This logging is performed in asynchronous
thread due to alignment’s multi-threading support. Data for the log-
ging thread are passed via a queue that supports writes from different
processes.

Alignment logging and attack logging are optional and may be
turned off if not wanted.

4. Current stage represents a key part currently attacked - byte index in the AES
case, and the index of the intermediate bit needed to extract key in the ASCON case.
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3.2.4 Incremental correlation

Correlation is usually calculated by two-pass algorithms that first cal-
culate the mean and then compute the final correlation. This method
is fast and stable for small datasets, but for large datasets, traversing
the data twice may result in a noticeable performance hit and minor
floating-point errors [21]. Furthermore, to generate graphs that show
correlation evolution with an increasing number of traces, the two-pass
approach needs to compute correlation for every point in the graph,
causing a significant performance hit due to repeated computation
for identical data. The last issue is that when calculating correlation,
all traces have to be loaded into memory at once, increasing memory
requirements. For these reasons, the two-pass approach is unsuitable
for an efficient CPA attack.

The method we will use to compute correlation during CPA attacks
is called Incremental correlation, which uses incremental statistic for-
mulas for mean, variance and covariance [21]. This method allows
loading only one trace at a time to the memory and updating the inter-
nal state with constant memory requirements. At any time, correlation
can be computed from the internal state without recomputing previ-
ous data, making creating an evolution graph much less demanding.
Furthermore, the algorithm traverses data only once, making it more
suitable for large datasets. However, it can be slower when comput-
ing correlation on small datasets with many key guesses. A classic
two-pass algorithm is recommended in that case. The implementation
contains both calculation methods, so a user can choose which one to
use according to circumstances.

The following formulas from 3.1 to 3.8 [21] show the correlation
calculation between datasets A and B using incremental statistics. The
formulas are utilized by incrementing the current index i from 0 to the
samples count of both datasets. A and B must have identical number
of samples.
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Definition 7. Calculation of delta used later in the computation

0A; = a; — meanA,_ (3.1)
6B; = b; — meanB;_4 (3.2)
where:
i is the index of the currently processed sample,
a; is the current sample from dataset A,
b; is the current sample from dataset B,

meanA;_; is mean of theset Auptoi—1and
meanB; 1 ismean of theset Buptoi—1.

Definition 8. Calculation of means of A and B using incremental
statistics

A.

meanA; = meanA;_ 1 + % (3.3)
B.

meanB; = meanB;_; + % (3.4)

Definition 9. Calculation of variances of A and B using incremental
statistics
varA; = varA; 1+ 0A; - (a; — meanA,) (3.5)

varB; = varB; 1 + 6B; - (b; — meanB;) (3.6)
where:

is basic multiplication,
varA;_1 is variance of the set A up toi — 1 and
varB;_; is variance of the set Bup toi — 1.

Definition 10. Calculation of covariance between A and B by incre-
mental statistic
i—1

covAB; = covAB;_1 + -

- SA; - 5B; (3.7)

where:
covAB;_; is covariance between A and Bup toi — 1.
Definition 11. Calculation of correlation with n samples loaded

A
corr = covABy (3.8)
V/varA, - v/varB,
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3.2.5 Other features

Implementation provide many small features that help with overall
usability and efficiency compared to the original scripts. Here is the
list of these features.

Automatic determination of input file format using extension.
Possibility to perform an attack without knowledge of the secret
key using minimal correlation and the difference between the
first two guesses.

e Optional result caching of power predictions for the same input.
e Support for multiple file formats (TRS, NPY and NPZ).
e Results of the attack, including best key guess, its location and

correlation, are shown in a clear table.

Use of numba library to compile Python code into C language
to increase performance and parallelisation of the code.
Dynamic changing of the file name according to the operations
performed on it (resampling, alignment, cut, etc.).

e Configuration and input checks using assert statements.
e Everything is written in a memory-friendly way and can be run

with almost any size of the main memory.
Object-oriented programming to encapsulate specific function-
alities and their state.

e Use of atexit to automate file closing and shared memory release.
e Allowed cutting of traces in attack tools to decrease the number

of processed samples and the output size.

Full attack automation by attack stage swapping, result logging
and automatic alignment.

Warning a user when many traces were discarded during auto-
matic alignment by log and console.

Use of enums and data models to effectively organise and man-
age related values.

Support for non-interactive graphs that do not stop execution.
Capability to dynamically reduce the size of the NPY file format.
Compatibility with various operating systems.

Automatic discovery of related data file when using the NPY
file format.

Parameter wrapper that helps safely extract metadata about
traces from numpy arrays using their names.
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3.3 Generics

Tasks like loading traces from the disk, logging, correlation compu-
tation or graph generation are necessary when performing any CPA
attack, and are independent of the underlying cryptographic primitive.
I extracted these operations into common scripts or generic objects
utilised by inheritance that provide an interface encapsulating shared
functionality, or automatically perform these tasks and provide access
to related data (state). Generic objects are single-purpose to avoid
redundancy in a child object.

Nevertheless, some properties and functions should not be used
in a child object. However, Python cannot enforce this, so I use the
underscore convention ’_" before the name of a function or property
to signal that it is private and should not be used outside the object or
by its child.

There is the use of inheritance even between generic objects, so they
implement only the necessary functionality. For example, modifying
traces requires loading them beforehand. However, suppose we only
need to read the traces and not write them back to a disk. Writing
functionality is redundant in that case, and we would like to inherit
only the loading component. Therefore, these two functionalities are
separated.

The Figure 3.2 shows relationships between main generic objects
and their instances.

Color Legend

d < inherits
Trace Loader [1 Generic objects Object instances
inherits inherits

| inherits |
L - ; Generic Attacker Generic Logger
Trace Visualizer Trace Printer

instance reference inherits

inherits inherits inherits
| |

) Generic Extractor
Parallel Writer Aes Attacker Ascon Attacker

inherit . . inherits' . . . .
‘ |nht|er|ts inherits inherits
1 |

Alignment Trace Converter Resampler Aes Key Extractor | |Ascon Key Extractor

Figure 3.2: Relationships of main generics and their corresponding
object instances
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I'r

ollows the list of generics, their purpose and interface functions that
should be used by child objects.

Trace Loader loads traces in supported formats (TRS, NPY, NPZ) and
provides metadata and functionality to work with them.
o reload_file reloads metadata and traces from a disk to reflect
potential changes. Initial loading is automatic when the object is
created.

Trace Writer extends Trace Loader with support to create output files
and write to them.
o create_output creates output files and memory objects based on
the configuration.
e save_output saves or flushes metadata and traces from memory
to a disk.

Parallel Writer extends Trace Writer with support to process and write
metadata and traces in parallel.

e copy_from_shared_memory copies parallel computation results
from shared memory to the output. Allows choosing which
traces are copied by index filtering.

o check_process_bounds checks if the process count is larger than
the remaining traces that need to be processed. If yes, lower the
count of processes to match the unprocessed trace count. This
method is useful when a trace count is not divisible by a process
count.

o copy_data_from_trace copies headers from the TRS file format to
a numpy array for metadata using shared memory.

e free_shared_memory is a helper method to free shared memory
by its name.

e allocate_shared_memory is a helper method to allocate shared
memory with the selected name and size in bytes.

Trace Creator automatically creates a new file with traces in supported
formats (TRS, NPY, NPZ) without loading existing traces.
o save_output saves or flushes metadata and traces from memory
to a disk.
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Generic Attacker provides functionality needed in every CPA attack.

should_update_alignment performs automatic alignment if nec-
essary and reloads files. This method should be called before
every attack interval.

add_trace adds trace with its power consumption predictions for
processing. Predictions depend on the cryptographic primitive
used. Therefore, they cannot be generalised.

compute_correlation computes current correlation between traces
and related predictions provided in add_trace method.
update_evolution computes current correlation, updates the evo-
lution graph and returns correlation results. It internally calls
the compute_correlation function.

evaluate_attack_stage is used to evaluate attack success and possi-
bly generate graphs, after adding all traces.
is_index_graph_point decides if the evolution graph should be
updated on the current trace index based on the evolution step
defined in the configuration.

reset is called after an attack interval is evaluated to reset the
state of the Generic Attacker. The hard reset flag should be set
to True when moving between attack stages.

attack is an abstract method that executes the CPA attack and
must be overridden by the specific attack implementation. Generic
Extractor uses it to start an attack on the current attack stage.

Generic Logger provides logging functionality with support for cre-
ating and updating log files, attack graphs and logging folders.
o get_log message is an abstract method that needs to be imple-

mented by the specific attack implementation because the log
message can differ between various attacks.

o get_current_graph_path gets the file name of the graph that will

be saved as a log. This name includes the current attack stage
and sample interval. The graph is saved in the attack visualisa-
tion script that renders it. This method only returns the graph’s
location.

log_success_message logs the success message by internally calling
overridden get_log_message and writing it to the file or console.
log_aa_warning_message is called when automatic alignment dis-
cards too many traces to log a warning message.
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Generic Extractor extends Generic Logger and provides a way to run
an attack on multiple stages with result accumulation and printing
after the attack.

o perform_result_operation is an abstract method that should per-
form attack-specific operation needed to extract the key after
acquiring the result of the attack on a subset of samples (attack
interval).

e extract_specific_stage performs a CPA attack on a specific stage
using the attacker instance. Automatically resets the state after
the attack and calls perform_result_operation.

e extract_key extracts the whole key by executing all attack stages.

3.4 Utilities

Utilities provide extra functionality to make analysing and processing
of traces more convenient. They can assist in finding the leakage’s
approximate location by trace visualization and reduce the trace size.

Trace Converter allows to convert traces between supported file for-
mats (NPY, NPZ and TRS) without applying any additional process-
ing. The conversion from numpy formats (NPY and NPZ) back to TRS
format is not implemented due to its lack of usefulness in this thesis.
Furthermore, Trace Converter allows manual filtering of potentially
faulty traces using their indexes and reducing trace length so that the
output only contains relevant samples to the current attack. Processing
of the traces can be performed in parallel to increase performance.

Trace Printer is a basic script that prints headers and trace samples for
all supported files. Printing parameters like format, trace index, and
sample interval can be specified in the configuration situated above
the script. An attacker can use this script to verify that the trace file
contains correct values and is not corrupted.

Trace Visualizer - Updated visualization script that my supervisor
provided to me. It can render multiple traces simultaneously in one
graph or separately. Graphs are interactive when Tkinter library is
installed for example via the pip package manager.
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3.5 Configuration

Original scripts were configured using global parameters defined di-
rectly within the code. This approach had several drawbacks, the most
problematic being the difficulty of using the same functionality from
multiple sources with different configuration needs. As a result, global
parameters had to be frequently modified to adhere to the currently
executed script. I removed these global parameters and replaced them
with configuration models that encapsulate all settings influencing
the script or its parents, if there are any. These configuration models
are injected into the corresponding object implementing the script,
allowing different sources to use different configurations without in-
terfering with each other. Configuration models are automatically
created within configuration files located in a designated directory.
The following sections contain non-trivial parameters used in vari-
ous configuration models with Python type notation. Star is naming a
Wildcar9 when the configuration parameter occurs W
T sourofs uncliy,
3.5.1 General parameters

This section contains parameters without binding to specialised func-
tionality utilised in various objects.

i \ v only
1. Input-Output (o ;([ A é( Cﬂq}‘l"‘""}\ fl (7 4 \;/
o * TARGET_PATH: str - Location of file with traces. /Vl
e * DATA_PATH: str - Location of file with associated data for the aln A ; a'O .
traces, such as key, nonce or plaintext. Only used when using ‘V\‘/h G+
NPY file format, due to the separation of data and traces. If v (
empty, automatically determinepname from *_TARGET_PATH. ! ‘M f) (™ W‘M
e * OUTPUT_FOLDER_PATH: str - Folder where script saves /L
the output. If empty, then use the same folder where the input '

is located.
e * OUTPUT_TYPE: enum - Output file format.

o *_INCLUDE_CUT_OUTPUT_NAME: bool - When the script
reduces trace length, the output file name will reflect it.

e * OUTPUT_COMPRESSED: bool - Specity whether to use out-
put compression when using the NPZ file format as the output.
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2.

3.

e * DATA_PARAMETERS: object - Object that defines the length
and position of named metadata parameters. Must be specified.

Generic location

e * SAMPLE_START: int - Sample index where the processing
should start.

*_ SAMPLE_END: int - Sample index where the processing
should end (None to get the index of the last sample).

* TRACE_START: int - Index of the first trace to process.

*_ TRACE_END: int - Index of the last trace to process (None
to end with the last trace).

*_TRACE_COUNT: int - Alternative way to restrict processed
traces using trace count from the beginning. Not used in the
same configuration with *_ TRACE_START and *_TRACE_END.

Multi-threading

e * PROCESS_COUNT: int - Number of threads (processes) used
in the script computation. I recommend specifying the number
corresponding to the count of CPU threads. However, when
using slow mechanical hard drives to store traces, use only one
process to avoid scattered reads from the disk.

3.5.2 Alignment properties

This

section contains parameters specific to alignment.
ALIGNMENT_DRY_RUN: bool - Calculate alignment without
saving to a disk. Consequently, saving time and avoiding disk
wear (SSD) when only evaluating the alignment performance.
ALIGNMENT_REFERENCE_SAMPLE_INDEX: int - Index of a
trace to use as the reference trace.
ALIGNMENT_START: int - Sample index where to start align-
ment with the reference trace.
ALIGNMENT_END: int - Sample index where to end alignment
with the reference trace.
ALIGNMENT_LOG_ENABLE: bool - Create a log file with shift
and correlation for every trace.
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3.5.3
This

3.54
This

attack.

ALIGNMENT THRESHOLD: float - The minimum correlation
expected to consider the alignment successful. When not met,
the trace is discarded.

ALIGNMENT_MAX_SHIFT: int - Maximum shift of trace al-
lowed.

ALIGNMENT_SHOW_GRAPH: bool - Show an interactive graph
to evaluate the alignment result.

ALIGNMENT _GRAPH_TRACE_COUNT: int - Number of traces
to show in the graph.

Resampling parameters

section contains parameters specific to resampling.
RESAMPLER_WINDOW_SIZE: int - Number of samples to in-
clude in the window.
RESAMPLER_OVERLAP: int - Number of samples which over-
lap in neighbouring windows.
RESAMPLER_ABS: bool - Samples transformed to absolute value
before processing.
RESAMPLER_USE_FLOAT: bool - If true, averages from resam-
pling are saved as floats (increases the output size while increas-
ing sample precision).

Attack parameters

section contains parameters specific to any CPA attack without

an explicit attack prefix. S&r represents the name of the particular

1.

T s < -

Attack features Webre ‘f ! [ @

e * USE_AVERAGER: bool - Average traces with the identical
data. Not recommended when an attack has only a few possible
data combinations and not enough information is preserved.

e * USE_INCREMENTAL_CORRELATION: bool - Use when
attacking larger amounts of traces with few key bits candidates
attacked in one attack stage.

e *_USE_PREDICTION_CACHE: bool - Use cache with already
computed predictions to avoid recalculation. Not recommended
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when there are numerous possible input combinations for pre-
diction because it considerably increases memory demand.

e *_ ADVANCED_ALIGNMENT_LENGTH: int - Length of the
resampling window used during advanced alignment. This
feature was described in 2.4.3. Zero to not use advanced align-
ment.

o * ADVANCED_ALIGNMENT_USE_ABS: bool - Use absolute
value on resampling intermediate result during advanced align-
ment. It can help with resampling accuracy.

2. Attack location

o * ATTACK_LENGTH: int - Number of samples to attack in one
iteration.

e * ATTACK_STEP: int- Step size between attack iterations. When
larger than ATTACK_LENGTH, some samples are skipped. If
smaller, attack iterations will overlap.

3. Attack success

e * USE_CORRECT_KEY: bool - Use the correct key to determine
attack success.

e * MIN_CORRELATION: float - Minimum correlation to con-
sider the attack successful, set it to zero to avoid this feature.

o * CORRELATION_DIFFERENCE: float - Minimum correlation
difference between the first two candidates to consider the
attack successful, specify zero not to use this feature.

4. Automatic alignment

o * AUTOMATICALLY_UPDATE_ALIGNMENT_ON: int - De-
fines how often automatic alignment occurs between attack
iterations. Use zero to disable automatic alignment. Described
in more detail in Chapter 3.2.1

e * ALIGNMENT_INTERVAL_LENGTH: int - Number of sam-
ples compared with the reference trace.
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* ALIGNMENT_INTERMEDIATE_TYPE: enum - Intermedi-
ate file format created by automatic alignment.

5. Extractor configuration

*_ATTACK_STAGE: int - Specity the attack stage which deter-
mines which part of the key is attacked, use -1 to attack all
stages and try to recover the entire key.

*_STOP_ON_FIRST: bool - Stop the execution on first successful
attack.

6. Graph generation

* SHOW_GRAPH_EVERY_ATTACK: bool - Show attack graph
for every iteration, even when the attack is unsuccessful. Useful
for debugging reasons.

*_SHOW_INTERACTIVE_GRAPH: bool - Use an interactive
graph that pauses the attack execution.

* SHOW_GRAPH_ATTACK_SUCCESSFUL: bool - Show graph
if the attack was successful.

* EVOLUTION_STEP: int - Number of traces between correla-
tion points in the correlation evolution graph.

7. Logging

*_LOG_FOLDER_PATH: str - Location in the file system where
the log from the CPA attack is saved.

*_LOG_RESAMPLER_USED: bool - Log includes the current
configuration of the resampler.

*_LOG_SUCCESS_ATTEMPTS: bool - Enable logging of suc-
cessful attempts to the log file. Otherwise, logging into the text
file is disabled.

*_ LOG_INCLUDE_GRAPHS: bool - Log graphs of successful
attacks for future use in the attack examination.

*_PRINT_LOG: bool - Enable printing log to the console.
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3.5.5 Utilities configuration

Utilities are single-purpose scripts. Therefore, their configuration pa-
rameters are situated directly in the script above the implementation,
just after imports. Configuration models are created at the bottom,
where the utility object is initialised and its entry point called.

1. Trace Converter non-generic configuration parameters.

CONVERTER_TRACES_TO_SKIP: set[int] - Set of integers rep-
resenting indexes of traces that will be skipped and not copied
to the output.

2. Trace Printer non-generic configuration parameters.

PRINTER_TRACE_INDEX: int - Index of the trace whose sam-
ples and metadata are printed by the script.

PRINTER_SHOW_DATA_HEX: bool - Printed data are repre-
sented in hexadecimal format.

3. Trace Visualizer non-generic configuration parameters.

VISUALIZER_GRAPH_TRACE_COUNT: int - Number of traces
plotted in one graph.

VISUALIZER_GRAPH_COUNT: int - Total number of graphs
rendered by the script.

VISUALIZER_TOGETHER: bool - Render all graphs simulta-
neously in one window. Otherwise, render them one by one.

VISUALIZER_SPACING: float - Space size that separates graphs
in simultaneous visualisation (VISUALIZER_TOGETHER is
True). Use zero not to modify default spacing.

VISUALIZER_X_LABEL: str - Label for x-axis in graphs.
VISUALIZER_Y_LABEL: str - Label for y-axis in graphs.

VISUALIZER_DISPLAY_LABELS: str - Display labels for the
first N traces.

VISUALIZER_LABEL_LOCATION: str - Location of trace la-
bels, check the Pyplot documentation for more information.
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4 Attack execution

CPA attacks rely on leakage of the secret key through the device’s
power consumption, as described in Chapter 1.1.1. We need a power
model influenced by a combination of key and value that changes
every run of the encryption process and is known to the attacker. We
calculate the correlation between the theoretical power consumption
obtained by the power model for every key guess and the captured
traces. When the correlation is high enough compared to other key
guesses, the key guess should represent part of the secret key with
some degree of confidence.

Usually, data transferred over the bus affects power consumption.
To create power model predictions, we need to compute an intermedi-
ate value in the encryption process, dependent on the key.

4.1 AES

4.1.1 Attack description

CPA attack on AES-128 usually regard only the first two operations
executed during the encryption process to perform the attack as de-
fined in Chapter 1.3. The first operation is the XOR between plaintext
and key. The second operation is the Sbox function calculated. Sbox
is a byte mapping computed 16 times for each byte of the current
AES block. Therefore, we can split the attack into multiple stages for
each Sbox calculation, extracting one byte of a key at a time with 256
possible combinations. Thus, reducing the required brute-force attack
to obtain a key from 2?8 combinations to just 16 * 28.

Definition 12. Power model used to extract one byte of AES encryption

key[9]
PMurs = HW(Sbox(Ks & L)) (4.1)
where:
K is the key guess for the current stage,
I is the byte of user input relevant to the current stage,

Sbox is the Sbox byte mapping function and
HW  is hamming weight.
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Attacking all samples from every trace simultaneously is not pos-
sible in a regularly-sized memory if traces are numerous and large.
Furthermore, alignment of traces diverges over time and should be
performed repeatedly. Therefore, the attack stage is further separated
into iterations. Every iteration takes only a subset of samples from
every trace, processes them and evaluates the results.

4.1.2 AES attack results

Attacking AES via power analysis was reasonably straightforward.
Byte leakage via Hamming Weight from the bus is sufficient to dis-
tinguish the correct key. The leakage of the JavaCard’s internal state
is substantial, and an attacker can extract the secret even with large
resampling (1000 step, 900 overlap) in less than 200 traces while using
automatic alignment (10000 alignment interval, 5000 max shift). Fig-
ure 4.1 shows the representative result using the configuration above
via three graphs, where the red line represents the correct key.
1. The top graph depicts the correlation between the power model
prediction and the actual power consumption.
2. The bottom left graph depicts the evolution of correlation with
an increasing amount of traces.
3. The bottom right graph depicts the ranking of the correct key.
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Figure 4.1: Sample attack result of the CPA attack on the AES-128
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We can utilise these graphs without knowledge of the secret key.
Nevertheless, the graph will not highlight the correct key, and the
bottom right graph would be empty.

4.2 Test Vector Leakage Assessment (TVLA)

4.2.1 Description of the TVLA

Test Vector Leakage Assessment (TVLA) [22] is a technique used
to determine if a device leaks the secret value through power con-
sumption without the necessity to bind to a specific attack. It uses a
statistical method called Welch'’s t-test that determines if two datasets
are substantially different or come from comparable distributions. It
uses sample mean and variances to evaluate both datasets and es-
tablishes the null hypothesis that samples are drawn from a similar
distribution [22]. Due to the distinct variances, the degree of free-
dom (DOF) should be calculated and used in cumulative function to
precisely identify the p-value for the test. However, for the sake of
simplicity only t-value with threshold |t| > 4.5 is used to evaluate leak-
age. When the t-value is larger than the absolute value of 4.5, it leads
to a confidence larger than 0.9999 to reject the null hypothesis [22].
Nevertheless, both sample sets must have at least 500 samples and
comparable sizes.

Definition 13. The calculation of t-value used in the Welch’s t-test

HoT K (4.2)

where:

Ho is sample mean of the first set,

p1 is sample mean of the second set,

sop is sample variance of the first set,

s1 is sample variance of the second set,
nog is size of the first set and

ny is size of the second set.
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4.2.2 TVLA methods

There are many methods of TVLA that differ in the selection of the
compared datasets. Follows the list of these methods [22].

1. $pecific - This method depends on the underlying cryptographic
algorithm because it uses an intermediate value to evaluate the
leakage. Traces are grouped into two datasets based on the result
of the intermediate value.

2. fixed vs random - This approach does not depend on the underly-
ing cryptographic algorithm because it only fixes the associated
data used in the attack in one dataset, like nonce or plaintext,
whereas they are kept random in the other dataset.

3. $emi-fixed vs random - Extension of fixed vs random method
where instead of using specific constant for the associated data,
we calculate all possible values that lead to the certain intermedi-
ate value. As a result, it depends on the assessed cryptographic
implementation.

4.2.3 TVLA on ASCON

I executed TVLA on ASCON to evaluate if nonce leakage is substantial

enough to influence the card’s power consumption. I used the fix_a<

vs random technique of TVLA. Measurements of traces with fixed
nonce were interleaved with measurements using a random nonce.
Interleaving prevents some device characteristics like value caching
that may influence the captured traces [22]. I aligned both traces,
which is vital for correct evaluation by TVLA. Otherwise, the TVLA
test would not compare samples representing the same operation,
making the results useless.
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Figure 4.2 shows two graphs. The graph on the left is the baseline, 5\( W (e f(\

where both trace sets used a random nonce. This graph depicts how
the result would look if the value of nonce does not influence the
power consumption. On the right graph is the result of TVLA using
the fixed vs random method. We can see many occurrences where the
t-value is larger than the 4.5 threshold represented by the red lines.
Therefore, we reject the null hypothesis that both trace sets come from
the same distribution, proving that nonce leaks as expected. Datasets
used in the TVLA contained 500 traces in each dataset.
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4. ATTACK EXECUTION

t-statistic values

I _a0 ]
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(a) TVLA only random nonce (b) TVLA fixed vs random nonce

Figure 4.2: TVLA between trace sets with random nonce and fixed vs
random nonce

4.3 ASCON

4.3.1 Attack description

The main goal of the ASCON CPA attack is to extract the secret key
initialised in registers x; and x; of the internal state S. Attacker knows
IV1(xp), constant and random nonce (x3, x4), which needs to be pub-
lic to enable decryption of a ciphertext. More details in Chapter 1.4.
Attack position needs to be after Sbox transformation to avoid linear
dependencies between the nonce and the key [3].

Sbox is calculated column-wise, increasing the difficulty of the
attack because it needs to be performed bit by bit. Before the Sbox
calculation is the addition (XOR) of the round constant to the reg-
ister x, that can be easily reverted by repeating the same operation

and obtaining the original key. ¥he Definition 14 shows Sbox output
represented in algebraic normal form for input registers xq - x4 of the
internal state S, each having 64 bits [3].

1. IV is abbreviation for Initialisation Vector.
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Definition 14. Sbox algebraic normal form (ANF) [3]

where:

=g >

Xi

Yi

V=N (4PxDxD1)Dx3Dx2D X (4.3)
Y1 = (@1 A(x2®x1) ®x2Ax;® x4 D xg (4.4)
Vo= A(x3P1)@x0Dx1 @1 (4.5)
Y3 = (x0® 1) A (x4 @ x3) B x2 D x1 D Xp (4.6)
Ya=x1 AN (X4 Dx0 D 1) Dx3 Dy (4.7)

is and logical operation,

is XOR logical operation,

represents 64-bit value with all bits set to 1,

is register on index 7 of internal state S and

is register transformed by Sbox on index i of internal state S.

The correlation within CPA attack exploits power consumption
changes between traces with a fixed key. Constant values like IV (x)
and key itself (x1, xo) do not influence the power consumption across
multiple traces and can be omitted from the evaluation. As a result,
we can simplify these equations by removing IV and key parts that do
not depend on a random nonce (x3, x4) that changes every trace and
is used to extract the key [3].

Definition 15. Simplified Sbox algebraic normal form (ANF) [3]

Yo=x1Ax4Dx3 (4.8)
Y1 = X3 AN x2Dx3 AN X1 D x3D x4 (4.9)
Yo = x4 N X3P x4 (4.10)
Y3 = X0 N X4 DX NX3D x4 D X3 (4.11)
Ys = X1 N X4 D x3D x4 (4.12)

From these equations we can learn that to attack the key part x;
we may use transformed registers vy and y4 due to their dependence
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on nonce and the first part of the key (x7). With knowledge of x1,
we may continue to extract the second part of the key (x;) using the
intermediate register y;. Other registers do not have a relationship
between key and nonce and cannot be used in the attack [3].

We could pinpoint our attack just after the Sbox. However, the
linear diffusion layer of ASCON improves the attack by combining
three key bits into a single bit, thus allowing an attacker to extract
three bits of the secret key by attacking just one bit of the intermediate
state, consequently accelerating the key extraction. W& shew

Definition 16. Bits of the intermediate state after the linear diffusion
layer of Sbox result. Rotations used in the linear diffusion layer are
defined in Table 1.3.

20_i = Yo; D Yo_i+(64-19) D Yo_i+(64-28) (4.13)
21 = Y1, DY1_it(64—61) D Y1 i+(64-39) (4.14)
Z4 i = Y4 DYa_ir(64-7) DYa_it(61-41) (4.15)

where:

zs i 1is bit on index i of register s after linear diffusion layer,
Ys ;i isbit onindex i of Sbox output in register s.

From the Definition 16 we can compute a single bit of the interme-
diate state that depends on three bits of the key- TTamming Weight of
a single bit is identity. Therefore, using this bit as a power modelT
viable. I added support to combine multiple bits as Hamming Weight,
but it increases the key size that needs to be brute-forced and intro-
duces correlation peaks that do not represent the correct key guess.
Therefore, I used only the single bit leakage in the attaclg.ofs ,w

tLe Omj:hl\l

4.3.2 Attack implementation

I use the shared functionality of the Generic Attacker for the ASCON
CPA attack. The Generic Attacker requires data for the prediction
calculation to be represented by a single value for various reasons, like
prediction caching, intermediate value storage, conditional averaging,
etc. However, in the ASCON case, the data necessary to perform the
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4. ATTACK EXECUTION

attack on a single bit is distributed across the nonce. Furthermore,
when attacking the second key part x,, we also need 3 bits from the first
part of the key x. For these reasons, I created a compact representation
of the required data called a nonce number.

The Figure 4.3 shows a nonce number for one bit of intermediate
state. When multiple bits are attacked at once, this representation is
just duplicated. The bit of key is ignored when attacking x; but is still
present to preserve the structure.

Nonce humber when attacking single bit a{ t“

X1+its2 | K3+ivs2 | Xa+ies2 | Xivirs1 | Xa+iesl | Xaies1 | Xisi X3+i Xa4i
Legend:
i - current index Bit of the first key part (used in attack on X2)
s1 - first shift for current register Bit of the first nonce

s2 - second shift for current register Bit of the second nonce

Figure 4.3: Nonce number structure when attacking on one bit

Extracted key bits by a successful attack may overlap between
attack stages (bits). These overlaps are caused by different rotation
values of corresponding registers that are unevenly distributed. We
want to minimise these overlaps and use a minimal set of indexes i nec-
essary to extract all 128 key bits. A suitable approach for discovering
these indexes is presented in [3] that removes avoidable overlapping.

Table 4.1 shows minimal sets of indexes for different registers of
internal state S. We can see that the best combination to extract the
whole key is register zp and z; with a total number of 58 bits that need
to be extracted. Reducing the required brute-force from 2?8 to just
58 x 23 = 464, which is lower amount than in AES case (8 * 28 = 2048).
However, in contrast with AES, a single bit leakage is more sensitive
to signal noise, unaligned traces or large resampling. Furthermore,
detecting leakage is much harder than the related brute-force attack.
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Table 4.1: List of best column indexes i for key extraction [3]

Register Indexes Length

20 0,1,23,45,6,7,8,17,18,19, 20, 21, 22, 23, 24, 28
25,26,27,28,29,30,31, 32,33, 34, 35

z1 0,127,389, 14,15,16, 20, 21, 22, 28, 29, 30, 35, 30
36, 37,42, 43, 44, 45, 49, 50, 51, 52, 56, 57, 58, 63

Z4 0,23,4,5,6,7,8,9,10,12,13,15, 16, 17, 18, 20, 33
21, 22,24, 26, 34,37, 42, 46, 50, 51, 52, 53, 54, 55,
56, 58

4.3.3 Proof of concept

Veritying the code that implements the ASCON attack using real traces
is hard because they contain millions of samples, and the leakage can
be hidden by noise even when the code is correct. For these reasons, I
implemented a Trace generator that simulates the behaviour of a real
trace by using random samples from a normal distribution with a pre-
defined mean and standard deviation. Furthermore, we can configure
noise, leakage intensity, sample count, trace count, leakage location,
index of leakage bit and random shifting! of generated traces.

Leakage is created by calculating the ASCON intermediate state
by executing the relevant part of the ASCON-128 AEAD algorithm.
The result of the first round of the permutation function p is added
to the sample at the specified location within the generated traces,
simulating the leakage.

This approach is correct because the power model is the identity
of the leakage bit. Therefore, we should be able to detect the leakage
and extract the relevant key part if the attack code is correct.

In the Figure 4.4 with two images, we can see that leakage is cor-
rectly detected if the noise is reasonable. Otherwise, it can blend with
invalid key guesses, and the attack code is unable to detect the leakage.

1. Trace shifting can be used to test alignment of traces.
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The image on the left is configured with more noise than on the
right, using a standard deviation equal to 20, leakage amplification?
equal to 4 and random noise equal to 3. The image on the right used
identical parameters except for the standard deviation, which was set
to 10 to simulate less noise.

We can see that there is still a peak at 1600 in the top graph, where
the leakage was inserted. However, this leakage is too small to be
detected as a successful attack. When we look at the graph on the
bottom right?® of the left image, we can see that at around 1900 pro-
cessed traces, it even got back in the second place behind the false
positive key guess. We can clearly detect the leakage in the image on
the right. Therefore, noise can significantly impair the attack and make
it unfeasible to detect the leakage.
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Figure 4.4: Comparison of leakage detection when noise rises on the
generated traces

4.3.4 Key leakage location

Single power trace of the first round of ASCON permutation function
p on our JavaCard takes about 65 million samples to measure on 1.25
GS/s*. This amount of samples is expensive to process, and we would

2. Leakage amplification represents the number added to the trace when the inter-
mediate state equals a logical one for the correct key.

3. This graph shows correct key position compared to other key guesses.

4. GS/s is abbreviation for giga samples per second.
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like to pinpoint the leakage location more precisely to avoid unnec-
essary computations and thoroughly analyse the potential leakage
location. Patterns in traces are better visible when aggressive resam-
pling is applied.

—— Trace[0]: 0x66113473...

20.0

0 10000 20000 30000 40000 50000 60000 70000
Time

Figure 4.5: Measured trace of first ASCON round with recognized
patterns

Figure 4.5 shows samples of one trace during the first round of
ASCON. On this trace, resampling with a window of 2000 and an
overlap of 1000 was applied, reducing the total size of the samples to
only 65 thousand from about 65 million. We can see several patterns
that can help us find the leakage location. Here is a description of each
segment and its probable underlying computation.

1. Processing APDU packet, padding plaintext and associated data
initializing ASCON internal state S and constants.”

2. Creating temporary internal state S’ copied from S and perform-
ing round constant addition.

3. Performing Shox calculation without usage of look-up table.

5. Nonce and plaintext sending is not measured together with card initialization.
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4-8. Performing rotation and xor operation on five internal registers
(Yo - y4) of S’ in this order (Linear diffusion layer).
9. Copying temporary internal state S’ back to the original registers
S. Sending a response from the card and waiting for further
instructions.

Leakage established in Chapter 4.3.1 is located after performing
one round of the permutation function p on the corresponding internal
state register. Therefore, we can see that the leakage is approximately
located at the end of the corresponding segment where the rotation
by the linear diffusion layer occurred for this register. As a result,
we can reduce the attack only to about two million samples for each
register. Furthermore, there is another potential leakage of all registers
simultaneously at segment 9, where the temporary internal state S’
containing leakage bits is copied to the original one. Therefore, we can
choose where to perform the power analysis.

4.3.5 Attack results

Detecting a single bit leakage can be significantly impaired by noise
within the signal, wrong alignment and inadequate resampling (too
aggressive or too small). Therefore, finding the leakage on real traces
proves to be challenging in ASCON. Features like automatic alignment,
advanced alignment® and trace discarding may help find the key bit
leakage.

I have managed to recover several bits of the key using the follow-
ing configuration.

1. Resampling applied to the traces configured with a window of
size 10 and step 5. Reducing the total number of samples within
the traces by five times.

Attack interval and step equal to 15000.

3. Automatic alighment performed every attack interval with align-

ment interval length equal to 15000 and max shift equal to 7500.

Threshold” for trace discarding after alignment set to 0.55.

. Advanced alignment was not used because basic alignment
could find patterns even without additional resampling.

N

o

6. Advanced alignment is a technique described in Chapter 2.4.3.
7. Minimal correlation between reference trace and the aligned trace.
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Figure 4.6 shows one example of successful leakage discovery using
the settings above. Leakage represents the first bit of the fourth internal
register (z4 o). This leakage occurs at the interval from 61412500 to
61487500, where both types of leakages defined in Chapter 4.3.4 could
occur. Note that due to the applied resampling, the interval length was
reduced five times to 15000. In this interval, 8000 traces were below
the threshold and discarded from the total of 30000. As a result, the
attack was performed with about 22 thousand traces.
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Figure 4.6: Leakage of the ASCON bit z4

The top graph shows multiple occurrences of the bit leakage be-
cause the card executed many operations that caused the bit to be
transmitted over the bus with a maximum correlation equal to 0.123,
making it clearly distinguishable as the correct key compared to the

average of 0.02 for incorrect key guesses. ’ l(
é—fpecu(u‘!‘( " L/t o

{
4.4 Comparison of CPA attacks on AES and ASCON 2[ ,'?ék(‘
o7k

The main difference between attacks on AES and ASCON is the power
model. The AES power model is the Hamming Weight of one byte
of the intermediate register containing the Sbox result. Finding this
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leakage results in the recovery of one byte of the key. On the other
hand, in the ASCON case, it is just one bit of the intermediate state that
allows obtaining only three bits of the secret key. A leakage of one bit
is harder to find and is much more sensitive to non-optimal alighment
and resampling, making it harder to detect. We need to extract at least
58 bits to obtain the whole key, contrasting with AES, where leakage
needs to be detected only 16 times for each key byte. Furthermore, six
nonce bits, necessary to extract one key bit, are scattered across the
nonce and are harder to collect.

Additionally, when attacking the second part of the ASCON key x»,
we must already have extracted the first part of the key x; because the
attacked intermediate value depends on it. This requirement makes
attacking the second part of the key more complicated when we have
only partially recovered the first part of the key.

One round of AES relevant to the attack is shorter than one round of
ASCON. Therefore, measured traces are larger and more demanding
to process. Furthermore, ASCON needs smaller resampling windows
to enable detection of the bit leakage, decreasing the reduction of trace
length from resampling. In the AES case, resampling can decrease the
size of traces up to 100 times or even more, in contrast with 10 times
in the ASCON case.

For all these reasons, attacking ASCON with a CPA attack proved
to be much more complex than the original attack on AES. This result
demonstrates that the ASCON algorithm design is somewhat robust
against side-channel attacks, even without any additional protections
being applied, and it proves that the designers of ASCON concentrated
on making the side-channel analysis harder.

i ' '
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4.5 Software countermeasures against CPA attacks 4 oA Lef

We extracted key bits of AES and ASCON using a CPA attack on power
traces and made the extraction with less than 1000 traces in some cases.
This success shows that we cannot leave the cryptographic implemen-
tation unprotected in the JavaCard when security is concerned, even
where algorithm design is mindful of side-channel attacks, like in the
ASCON case. However, complete protection against sidéxchannel at-
tacks using only software protections is not possible and usually only
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makes the attack execution harder, requiring more traces and more ex-
pensive computations on them [7]. Nevertheless, they may discourage
the attacker from trying if the attack becomes too expensive.

These protections come at varying costs on the performance of the
cryptographic algorithm. Therefore, the balance between the level of
protection and usability is crucial.

4.5.1 Hiding

Hiding is one of the two main approaches of protection against side-
channel attacks via power analysis. The main goal of hiding is to
make the leakage location harder to find and to make aligning traces
more challenging. This result is achieved by randomising the compu-
tation by unpredictably shuffling the order of operations that can be
swapped and randomly introducing operations that do not influence
the encryption result [7].
Because randomness is independent of the fixed key, it can be aver-
aged out with more power measurements. As a result, this approach
only increases the signal-to-noise ratio and hence the difficulty of the
attack [7]. A number of new operations and randomisation possibil- [\ ‘é \
ities make the calculation slower but increase the complexity of the bl S
side-channel attack, achieving a more secure implementation. M Vv G

qa/(_o{yl)/

o . M p —
Masking is a more complex countermeasure against power consump- _ “ ol
tion analysis. This approach takes the sensitive variablg usually key, W eatd
and splits it into several shares by introducing random masks sy, ..., 54 Q y
applied to the key. The number of masks d is called a masking order 0‘
creating d + 1 shares [7]. Equation 4.16 shows how the additional J MUV 0 Cor~
share is obtained to make this equation hold k = sp © s1 @ ... ® 5.

Definition 17. Calculation of the first share sy [7]
So=kPBs1P..Psy (4.16)

4.5.2 Masking

where:

k  is the sensitive value,
s; is the share with index i,
sg 1is the last share with index equal to the masking order.
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4. ATTACK EXECUTION

Because only the shares created by the random masks are processed
by the device the real key does not influence the power consumption
directly. Attacking masked implementation is done using higher-order
attacks. Attacker must recover all shares that may occur at different
times to extract the key:.

Key masking must not change the computation result. Therefore,
some linear and non-linear operations within a cryptographic algo-
rithm need to be adjusted. Linear operations can process the shares
separately, then combine the results to gain the correct output. Non-
linear operations like Sbox must take a different strategy involving
more complex computations out of the scope for this thesis [7].

4.6 Future work

Protected implementations require a substantial number of power
measurements and advanced trace processing techniques to mount
the attack [7]. Gathering traces and writing the code for the CPA attack
on a protected implementation requires considerable time investment.

Time constraints and the extensive scope of the thesis left me with
an insufficient amount of time to complete the implementation and
evaluation of CPA attacks against protected implementations of AS-
CON via hiding or masking. This part of the thesis was optional and
will be performed in subsequent work.

The follow-up work will include extending the implementation to
support attacks on protected implementations of ASCON-128, as well
as their execution and comparison with the unprotected version.

7
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5 Conclusion

Work on this thesis started by updating basic scripts that performed
a side-channel attack on AES-128 via power consumption using cor-
relation power analysis (CPA). These scripts were provided to me
by the CRoCS laboratory. The original scripts were poorly structured,
lacked automation, were difficult to read, and suffered from significant
performance inefficiencies. I mitigated these issues by substantially
improving the performance, configurability, usability, structure, and
readability of these scripts. Additionally, I introduced several new /\ \
features, including automated attack execution, file memory map- 3(/ L { .
ping for constant memory usage, logging, more efficient incremental
calculation of correlation, and enhanced leakage detection.
I developed a reusable CPA Framework from this improved code-
base by abstracting shared functionality into generic objects and scripts.
This framework simplifies the implementation of other CPA attacks on
various cryptographic algorithms by providing a modular and exten-
sible architecture. I utilised this framework while implementing the
CPA attack on the ASCON-128 authenticated encryption algorithm.
I implemented the Test Vector Leakage Assessment (TVLA) tech-
nique to assess leakage of nonce on power traces collected from a
JavaCard using the fixed vs random approach. The measurement
script needed to be updated to support the interleaved fixing of a
nonce necessary during TVLA evaluation.
I successfully implemented a state-of-the-art CPA attack on the
ASCON-128 authenticated encryption and identified exploitable leak-
age in the power traces, enabling recovery of the key bits. This key bit
recovery demonstrates that the framework and attack implementation
are correct and can extract the secret using the leakage of the content \
of internal registers via power ¢ nsun tion. C— \MC\J\\L( t
At last, I described potentia sottware-based countermeasures to +h ‘\\é
decrease vulnerability against side-channel attacks through power

analysis. Evaluating the effectiveness of these countermeasures by ‘[\V\( (
implementing and executing the attack on protected implementations it fh( L
and comparing their resilience against the unprotected version is sub- - (¢
ject to future work. S qlcg
G { Vtt wv ¢
WoUk
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